The background field method and the linearization problem for Poisson manifolds

نویسنده

  • P. A. Grassi
چکیده

The background field method (BFM) for the Poisson Sigma Model (PSM) is studied as an example of the application of the BFM technique to open gauge algebras. The relationship with Seiberg-Witten maps arising in non-commutative gauge theories is clarified. It is shown that the implementation of the BFM for the PSM in the Batalin-Vilkovisky formalism is equivalent to the solution of a generalized linearization problem (in the formal sense) for Poisson structures in the presence of gauge fields. Sufficient conditions for the existence of a solution and a constructive method to derive it are presented. 1 [email protected] 2 [email protected]

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adomian Decomposition Method On Nonlinear Singular Cauchy Problem of Euler-Poisson- Darbuox equation

n this paper, we apply Picard’s Iteration Method followed by Adomian Decomposition Method to solve a nonlinear Singular Cauchy Problem of Euler- Poisson- Darboux Equation. The solution of the problem is much simplified and shorter to arriving at the solution as compared to the technique applied by Carroll and Showalter (1976)in the solution of Singular Cauchy Problem. 

متن کامل

Semiconductor Device Simulation by a New Method of Solving Poisson, Laplace and Schrodinger Equations (RESEARCH NOTE)

In this paper, we have extended and completed our previous work, that was introducing a new method for finite differentiation. We show the applicability of the method for solving a wide variety of equations such as Poisson, Lap lace and Schrodinger. These equations are fundamental to the most semiconductor device simulators. In a section, we solve the Shordinger equation by this method in sever...

متن کامل

Conformal mappings preserving the Einstein tensor of Weyl manifolds

In this paper, we obtain a necessary and sufficient condition for a conformal mapping between two Weyl manifolds to preserve Einstein tensor. Then we prove that some basic curvature tensors of $W_n$ are preserved by such a conformal mapping if and only if the covector field of the mapping is locally a gradient. Also, we obtained the relation between the scalar curvatures of the Weyl manifolds r...

متن کامل

A High-Velocity Impact Simulation using SPH-Projection Method

In this paper, a new smoothed particle hydrodynamics (SPH) algorithm for simulation of elastic-plastic deformation of solids was proposed. The key point was that materials under highvelocity impact (HVI) behave like fluids. This led to propose a method which was similar to the socalled SPH-projection method, in which the momentum equations are solved as the governing equations. The method consi...

متن کامل

Significant Error Propagation in the Finite Difference Solution of Non-Linear Magnetostatic Problems Utilizing Boundary Condition of the Third Kind

This paper poses two magnetostatic problems in cylindrical coordinates with different permeabilities for each region. In the first problem the boundary condition of the second kind is used while in the second one, the boundary condition of the third kind is utilized. These problems are solved using the finite element and finite difference methods. In second problem, the results of the finite di...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004